
International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1920
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

REVERSIBLE DATA HIDING USING
ENCRYPTED BYTE ARRAY IMAGE

Authors Name/s: A. Vigneysh Aravindh
Department of Computer Science and Engineering

S.R.M University
Chennai – 600026, India

Email ID: vigneysharavindh@gmail.com

ABSTRACT

Outsourced storage of Multimedia Files by cloud has

become more and more popular. To Manage the

Outsourced Image, the cloud server may embed some

additional information regarding the ownership of

Image. Obviously, the cloud service has no rights to

introduce permanent Data Distortion. Different from all

previous encryption-based frameworks, in which the

cipher texts may attract the notation of the curious

cloud, RIT-based framework allows the user to

transform the content of original image into the content

of another target image with the same size. Therefore,

RDH is needed. It is a technique by which the original

image can be recovered without loss after the

embedded message is extracted. Cloud service makes it

challenging to protect privacy of the image contents.

Encryption is the most popular technique for protecting

privacy. The cloud server can easily embed data into

the ‘encrypted image’ by any RDH methods for

plaintext images and thus a client-free scheme for

RDH-EI can be realized , that is, the data-embedding

process executed by the cloud server is irrelevant with

processes of both encryption and decryption. Hence,

RDH is implemented in encrypted image so that the

cloud server can reversibly embed data but cannot

receive any information about the original image.

1. INTRODUCTION

1.1 GENERAL

 Steganography is the practice of concealing a file,

message, image, or video within another file, message,

image, or video. The advantage of steganography

over cryptography alone is that the intended secret

message does not attract attention to itself as an object

of scrutiny. Plainly visible encrypted messages—no

matter how unbreakable—arouse interest, and may in

themselves be incriminating in countries

where encryption is illegal. Thus, whereas

cryptography is the practice of protecting the contents

of a message alone, steganography is concerned with

concealing the fact that a secret message is being sent,

as well as concealing the contents of the message.

1.2 OBJECTIVE

The Main Objective is to encrypt an Image Before

performing the Reversible Image Transformation

Technique. Adding a Second Layer of Security

Enhances the Privacy offered to the Images that are

going to be outsourced to a Server. Using this system

data extraction and image recovery are free of any

error. DE technique is still a promising technique and it

is expected that more serious trials to improve it will be

revealed during the next few years.

1.3 DESCRIPTION

Reversible data hiding is a type of data hiding

techniques whereby the host image can be recovered

exactly. Being lossless makes this technique suitable

for medical and military applications. Difference

expansion (DE) is one of the most important techniques

which are used for reversible data hiding. This

technique received more attention over the years

because of its high efficiency and simplicity.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1921
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

The aim of this paper is to present a review of

reversible DE-based data hiding techniques proposed

so far in order to define the purpose of DE-based data

hiding, reflecting recent progress, and provide some

research issues for the future. Many researchers tried to

improve its performance in terms of hiding capacity

and visual perceptibility. However, some of the

modified techniques need more improvements to be

applicable. Steganography includes the concealment of

information within computer files. In digital

steganography, electronic communications may include

steganographic coding inside of a transport layer, such

as a document file, image file, program or protocol.

Media files are ideal for steganographic transmission

because of their large size. For example, a sender might

start with an innocuous image file and adjust the color

of every 100th pixel to correspond to a letter in the

alphabet, a change so subtle that someone not

specifically looking for it is unlikely to notice it

Reversible data hiding scheme is the technique that

allows embedding data inside an image and later the

hidden data can be retrieved as required and the exact

copy of the original host image is recovered. Some of

the traditional reversible data hiding schemes are based

on modulo-arithmetic additive and spread-spectrum

techniques.

 An example of these schemes is the one proposed by

Honsinger , which based on addition of modulo 256 as

an invertible operation. Although some of these

schemes are robust, the modulo-arithmetic-based

reversible data-hiding algorithms have the disadvantage

of salt-and-pepper visual artifacts and hinder

watermark retrieval. In order to enhance the robustness

of the reversible watermarking and reduce the salt-and-

pepper visual artifact of the above mentioned schemes,

histogram shifting techniques were proposed. In this

scheme, the embedding target is replaced by the

histogram of a block of the image. A good example of

the scheme is the circular interpretation scheme

proposed by Vleeschouwer. Although this type of data

hiding schemes provides a higher quality of the

embedded image, the embedding capacity is lower. A

different category of data hiding schemes involves

methods that losslessly compress a set of selected

features from an image and embed the payload in the

space saved due to the compression. This type results in

higher embedding capacity than the previously

mentioned types. Another scheme of this type is the

generalized Least Significant Bit (g-LSB) embedding

algorithm proposed by Celik , which is based on

grouping the pixels and embedding data bits into the

state of each group.

2. SYSTEM ANALYSIS

2.1 LITERATURE SURVEY

Title: - Reversible Data Hiding using PSNR and RDH

technique

Author: Asha S Raj, Mrs. Gayathri Nair P

Year: 2016

Description: A reversible data hiding can recover the

original image without any distortion from the marked

image after the hidden data have been extracted. The

techniques utilizes the zero or the minimum points of

the histogram of an image. It modifies the pixel values

to embed data into the image. It can embed more data

than many of the existing reversible data hiding

techniques. It is proved that the peak signal-to-noise

ratio (PSNR) of the marked image generated by the

method. The PSNR is higher for all reversible data

hiding techniques. Reversible Data Hiding is used to

embed a piece of information into the host images to

generate the marked one. Original image can be exactly

recovered after extracting the embedded data. The

original cover can be reversibly restored after the

embedded information is extracted. The Reversible

Data Hiding process eliminates the disadvantages of

reversible watermarking. The process to reverse the

marked images back to the original cover images after

the hidden data are extracted. The process which can be

used the Peak Signal Noise Ratio (PSNR) to check the

quality of reversed image. The PSNR value is the

maximum possible power of a signal and the power of

corrupting noise. It is the most commonly used

measure of quality of reconstruction. PSNR represent

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Pixel

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1922
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

the distortion level between marked image and cover

image. Reversible Data Hiding mostly used Difference

expansion (DE).It is one of the most important

techniques which are used for reversible data hiding.

With the help of PSNR value the recovered images can

be checked.

Title: - Image distortion and Target compression

Author: K-.S.Kim, M.-J.Lee,H.-Y.Lee

Year: 2014

Description: reversible data hiding scheme for

perfectly restored the original content after extraction

of the hidden data. That is the optimal rule of value

modification under a payload-distortion criterion is

found by using an iterative procedure. The secret data,

as well as the auxiliary information are carried by the

differences between the original pixel-values and the

corresponding values estimated from the neighbors.

Here, the optimal value transfer rule is used to modify

the estimation errors. The optimal value transfer matrix

is produced for maximizing the amount of secret data,

i.e., the pure payload, by the iterative procedure. Also,

the host image is divided into a number of pixel subsets

and an estimation error in the next subset is always

embedded by the auxiliary information of a previous

subset. A receiver can successfully extract the

embedded secret data and recover the original content

in the subsets with an reverse order. In this way, a good

reversible practical data hiding performance is

achieved. This way, a good payload-distortion

performance can be achieved.

Title: - A new Reversible Data Hiding Scheme with

Improved Capacity Based on Directional Interpolation

and Difference Expansion

Author: P.V Sabeen Govind, M. Wilscy

Year: 2015

Description: Using reversible data hiding (RDH) we

can hide our secret data into a cover image and the

receiver can restore both the secret data and the original

image. It has wide application in medical imagery,

military imagery where no distortion of original cover

is allowed. Hong and Chen proposed a RDH scheme

based on interpolation and histogram shifting. In their

scheme reference pixels are not used for data

embedding which leads to low capacity. Huang et

al. modified this scheme and proposed a high capacity

RDH scheme in which prediction errors are used for

data embedding. In this paper we propose a further

modification to the scheme of Huang et al. based on

directional interpolation. Directional interpolation

yields a better approximation to the original pixel

which improves the capacity of embedding.

2.2 EXISTING SYSTEM

In this framework, a content owner encrypts the

original image using a standard cipher with an

encryption key. After producing the encrypted image,

the content owner hands over it to a data hider (e.g., a

database manager) and the data hider can embed some

auxiliary data into the encrypted image by losslessly

vacating some room according to a data hiding key.

Then a receiver, maybe the content owner himself or an

authorized third party can extract the embedded data

with the data hiding key and further recover the

original image from the encrypted version according to

the encryption key

2.2.1 EXISTING TECHNIQUE

 Reversible data hiding (RDH)

DISADVANTAGES

 All previous methods embed data by

reversibly vacating room from the encrypted

images, which may be subject to some errors

on data extraction and/or image restoration.

 It is difficult for data hider to reversibly hide

the data behind the image.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1923
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.3 PROPOSED SYSTEM

Since losslessly vacating room from the

encrypted images is relatively difficult and

sometimes inefficient, why are we still so

obsessed to find novel RDH techniques

working directly for encrypted images? If we

reverse the order of encryption and vacating

room, i.e., reserving room prior to image

encryption at content owner side, the RDH

tasks in encrypted images would be more

natural and much easier which leads us to the

novel framework, “reserving room before

encryption (RRBE)”.Obviously, standard

RDH algorithms are the ideal operator for

reserving room before encryption and can be

easily applied to Framework RRBE to

achieve better performance compared with

techniques from Framework VRAE.

2.2.1 PROPOSED TECHNIQUE

 Reversible Data Hiding using Encrypted Byte

Array Image

ADVANTAGES

 In this system it uses traditional RDH

algorithm, and thus it is easy for the data

hider to reversibly embed data in the

encrypted image.

 Using this system data extraction and image

recovery are free of any error.

3. PROJECT DESCRIPTION

3.1 GENERAL

 We get the Image from the user and encrypt

it for Security purposes and embed the Data into a

Target Image to Maintain Confidentiality.

3.2 PROBLEM DEFINITION

The Online File Storage Services are Vulnerable to

Many Security Threats. The Services, Once hacked,

gives access to the Attacker of all our Private Content.

Recent Attack on Apple’s Cloud Storage Service

known as iCloud is a Prime Example. Many Celebrity’s

Private Pictures have been leaked, leading to a Massive

Controversy. These Online Services, when processing

our Images, are specifically curious when they come

across Encrypted Images. They’re designed to take

Interest in these types of Images, there by attracting

Attention of the Hacker who gains Access. The fact

that Services know that your Image is encrypted, itself

in a way is a Violation of Privacy.

3.3 METHODOLOGIES

The Image to be Encrypted and Transformed is

encrypted with the Use of DES Algorithm and a 64 Bit

Symmetric Key given by the User. The Encrypted

Image is converted to byte Array Format which is

embedded into the Target Image. To retrieve the

Original Image, The Picture is Reverse Transformed

and Decrypted.

3.3.1 MODULE & MODULE CONTENT

MODULES

• Authentication Module

- Sign In Module

- Sign Up Module

• Cryptography Module

- Encryption Module

- Decryption Module

• Transformation Module

- Image Transform Module

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1924
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

- Image Reverse Transform Module

4. SYSTEM REQUIREMENTS

4.1 HARDWARE REQUIREMENTS

Processor : Intel Core i3-5005u

Hard Disk : 512 GB HDD

RAM : 3 GB

4.2 SOFTWARE REQUIREMENTS

Operating System : Windows 8.1

IDE : NetBeans 8.2

Front End : Java

 SYSTEM DESIGN

5.1 GENERAL

System design is a process to transform user

requirements into somesuitable form, which helps the

programmer in software coding and implementation.

For assessing user requirements, an SRS (Software

Requirement Specification) document is created

whereas for coding and implementation, there is a

need of more specific and detailed requirements in

software terms. The output of this process can directly

be used into implementation in programming

languages.

Software design is the first step in SDLC (Software

Design Life Cycle), which moves the concentration

from problem domain to solution domain. It tries to

specify how to fulfill the requirements mentioned in

SRS.

5. SYSTEM DESIGN

Fig.1.0 System Architecture

Fig.1.1 Deployment Diagram

Fig.1.2 Use Case Diagram

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1925
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig.1.3 Class Diagram

Fig1

.5

Sequ

ence

Diag

ram

6. SOFTWARE TESTING

6.1 GENERAL

The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable

fault or weakness in a work product. It provides a way

to check the functionality of components, sub-

assemblies, assemblies and/or a finished product. It is

the process of exercising software with the intent of

ensuring that the Software system meets its

requirements and user expectations and does not fail in

an unacceptable manner. There are various types of

tests. Each test type addresses a specific testing

requirement.

6.2 DEVELOPING METHODOLOGIES

The test process is initiated by developing a

comprehensive plan to test the general functionality

and special features on a variety of platform

combinations. Strict quality control procedures are

used.

The process verifies that the application meets the

requirements specified in the system requirements

document and is bug free. The following are the

considerations used to develop the framework from

developing the testing methodologies.

6.3 TYPES OF TESTS

6.3.1 Unit Test

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program input produces valid

outputs. All decision branches and internal code flow

should be validated. It is the testing of individual

software units of the application. It is done after the

completion of an individual unit before integration.

This is a structural testing, that relies on knowledge of

its construction and is invasive. Unit tests perform

basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path

of a business process performs accurately to the

documented specifications and contains clearly defined

inputs and expected results.

6.3.2 Functional Test

Functional tests provide systematic demonstrations that

functions tested are available as specified by the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1926
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of

valid input must be accepted

Invalid Input : identified classes of

invalid input must be rejected

Functions : identified functions must be

exercised

Output : identified classes of

application outputs must be exercised

Systems/Procedures : interfacing systems or

procedures must be invoked.

6.3.3 System Test

System testing ensures that the entire integrated

software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is based

on process descriptions and flows, emphasizing pre-

driven process links and integration points.

6.3.4 Performance Test

The performance test ensures that the output be

produced within the time limits, and the time taken by

the system for compiling, giving response to the users

and request being send to the system for to retrieve the

results.

6.3.5 Integration Test

Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures

caused by interface defects.

6.3.6 Acceptance Test

User Acceptance Testing is a critical phase of any

project and requires significant participation by the end

user. It also ensures that the system meets the

functional requirements.

Acceptance Testing for Data Synchronization:

 The Acknowledgements will be

received by the Sender Node after

the Packets are received by the

Destination Node.

 The Route add operation is done

only when there is a Route request

in need

 The status of Nodes information is

done automatically in the Cache

Updating process.

6.3.7 Build the test plan

Any project can be divided into units that can be further

performed for detailed processing. Then a testing

strategy for each of this unit is carried out. Unit testing

helps to identify the possible bugs in the individual

component, so the component that has bugs can be

identified and can be rectified from errors.

7. APPLICATION

7.1 GENERAL

This session gives the details of our application usage

in secure Image transmission and it’s Usefulness.

7.2. APPLICATION

USE IN MODERN PRINTERS

The larger the Target Image (in binary data, the number

of bits) relative to the hidden Encrypted Image, the

easier it is to hide the latter. For this reason, digital

pictures (which contain large amounts of data) are used

to hide messages on the Internet and on other

communication media. It is not clear how common this

actually is. For example: a 24-bit bitmap uses 8 bits to

represent each of the three colour values (red, green,

and blue) at each pixel. The blue alone has 28 different

levels of blue intensity. The difference between

11111111 and 11111110 in the value for blue intensity

is likely to be undetectable by the human eye.

Therefore, the least significant bit can be used more or

less undetectably for something else other than colour

information. If this is repeated for the green and the red

elements of each pixel as well, it is possible to encode

one byte of Encrypted Image for every three pixels.

Some modern computer printers use steganography,

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Bitmap
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Pixel

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1927
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

including HP and Xerox brand colour laser printers.

These printers could print the Dots which are Actually

the Encrypted Byte Array which can be recovered on

scanning the Image.

USE IN MOBILE APPLICATIONS

Can be used as an Android / iOS Application to to

secure images so that if Users do not want third party

apps or users to access their content, they could make

use of the App to Encrypt and Transform the Image

into something that is irrelevant to the context of the

Original Image. That way, the third party Apps or users

will not be able to guess that the image has been

transformed,hence they wouldn’t be interested in that

Image at all. Lots of Online Blackmailing and abuse

can be prevented with the safety features this

application provides. It’s a viable method to ensure

Privacy and Protection of personal Content.

8. CONCLUSION

8.1 FUTURE ENHANCEMENT

As a part of our Future Work, This Project holds Great

Potential for Privacy Issues and Copyright Issue

Prevention for not only Images but other Multimedia

Files such as Audio and Video. As on Example of a

Future Enhancement, We Planned to Hide and Audio

File in a Target Audio file irrelevant to the Original

File. Enveloping Technique, Same technique used to

Transmit Radio Signals can be used to Embed the

Message Signal in another Message Signal with gets

enveloped to the Carrier Signal.

8.2 SUMMARY

We introduced an Image Steganography Method which

Ensures Privacy and Prevention of Online Abuse and

Blackmail. The Algorithm Primarily Focuses on

Cryptography for Security and Reversible Data Hiding

for Confidentiality and Integrity of the Data. It is a

Simple Application with lots of Room for

Enhancements and Potential for serving a better

Purpose for the Online Society.

REFERENCES

[1] K. Hwang, D. Li, “Trusted cloud computing with

secure resources and data coloring,” IEEE Internet

Computing, vol. 14, no. 5, pp. 14-22, Sept.-Oct. 2010.

[2] F. Bao, R. H. Deng, B. C. Ooi, et al., “Tailored

reversible watermarking schemes for authentication of

electronic clinical atlas,” IEEE Trans. on Information

Technology in Biomedicine, vol. 9, no. 4, pp. 554-563,

Dec. 2005.

[3] F. Willems, D. Maas, and T. Kalker, “Semantic

lossless source coding,” 42nd Annual Allerton

Conference on Communication, Control and

Computing, Monticello, Illinois, USA, pp. 1411-1418,

2004.

[4] W. Zhang, X. Hu, N. Yu, et al. “Recursive

histogram modification: establishing equivalency

between reversible data hiding and lossless data

compression,” IEEE Trans. on Image Processing, vol.

22, no. 7, pp. 2775-2785, Jul. 2013.

[5] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y.

Q. Shi, “Reversible watermarking algorithm using

sorting and prediction,” IEEE Trans. on Circuits and

Systems for Video Technology, vol.19, no.7, pp. 989-

999, Jul. 2009.

[6] B.ou, X. Li, Y. Zhao, R. Ni, Y. Shi, “Pairwise

prediction-error expansion for efficient reversible data

hiding,” IEEE Trans. on Image Processing, vol. 22,

no.12, pp. 5010-5021, Dec. 2013.

[7] Ioan-Catalin Dragoi, Dinu Coltuc, “Local-

prediction-based difference expansion reversible

watermarking,” IEEE Trans. on Image Processing, vol.

23, no. 4, pp. 1779-1790, Apr. 2014.

[8] Z. Ni, Y. Shi, N. Ansari, and S. Wei, “Reversible

data hiding,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 16, no. 3, pp. 354-362, Mar.

2006.

[9] J. Tian, “Reversible data embedding using a

difference expansion,” IEEE Trans. on Circuits and

Systems for Video Technology, vol. 13, no.8, pp. 890-

896, Aug. 2003.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Xerox

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1928
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[10] X. Hu, W. Zhang, X. Li, N. Yu, “Minimum rate

prediction and optimized histograms modification for

reversible data hiding,” IEEE Trans. on Information

Forensics and Security, vol. 10, no. 3, 653-664, Mar.

2015.

APPENDIX 1

SAMPLE CODING

Encryption

private void
jButton3ActionPerformed(java.awt.event.ActionEvent
evt) {
 try{
 FileInputStream file = new
FileInputStream(T1.getText());
 FileOutputStream outStream = new
FileOutputStream("Encrypted Image.png");
 String KeyString = TB1.getText();
 byte k[];
 k = KeyString.getBytes();
 SecretKeySpec key = new SecretKeySpec(k,
"DES");
 Cipher enc = Cipher.getInstance("DES");
 enc.init(Cipher.ENCRYPT_MODE, key);
 CipherOutputStream cos = new
CipherOutputStream(outStream,enc);
 byte[] buf = new byte[196608];
 int read;
 while((read=file.read(buf))!=-1)
 {
 cos.write(buf,0,read);
 }
 int width = 128;
 int height = 128;

 DataBuffer buffer = new DataBufferByte(buf,
buf.length);

 //3 bytes per pixel: red, green, blue
 WritableRaster raster =
Raster.createInterleavedRaster(buffer, width, height, 3
* width, 3, new int[] {0, 1, 2}, (Point)null);
 ColorModel cm = new
ComponentColorModel(ColorModel.getRGBdefault().
getColorSpace(), false, true, Transparency.OPAQUE,
DataBuffer.TYPE_BYTE);
 BufferedImage image = new BufferedImage(cm,
raster, true, null);
 ImageIO.write(image, "png", new File("Converted
Noise Image.jpg"));

 file.close();
 outStream.flush();
 cos.close();
 jOptionPane1.showMessageDialog(null, "The
Image Was Encrypted Succesfully!");
 }catch(Exception e){
 jOptionPane1.showMessageDialog(null,e);
 }
 }

Decryption

try{
 FileInputStream file = new
FileInputStream(T1.getText());
 FileOutputStream outStream = new
FileOutputStream("Decrypted Image.png");
 String KeyString = TB1.getText();
 byte k[];
 k = KeyString.getBytes();
 SecretKeySpec key = new SecretKeySpec(k,
"DES");
 Cipher enc = Cipher.getInstance("DES");
 enc.init(Cipher.DECRYPT_MODE, key);
 CipherOutputStream cos = new
CipherOutputStream(outStream,enc);
 byte[] buf = new byte[1024];
 int read;
 while((read=file.read(buf))!=-1)
 {
 cos.write(buf,0,read);
 }
 file.close();
 outStream.flush();
 cos.close();
 jOptionPane1.showMessageDialog(null, "The
Image Was Decrypted Succesfully!");
 }catch(Exception e){
 jOptionPane1.showMessageDialog(null,e);
 }

Transformation

private void
jButton2ActionPerformed(java.awt.event.ActionEvent
evt) {
 try{
 FileInputStream file = new
FileInputStream(T1.getText());
 FileOutputStream outStream = new
FileOutputStream("Decrypted Image.png");
 String KeyString = TB1.getText();
 byte k[];
 k = KeyString.getBytes();
 SecretKeySpec key = new SecretKeySpec(k,
"DES");
 Cipher enc = Cipher.getInstance("DES");
 enc.init(Cipher.DECRYPT_MODE, key);
 CipherOutputStream cos = new
CipherOutputStream(outStream,enc);
 byte[] buf = new byte[1024];
 int read;
 while((read=file.read(buf))!=-1)
 {
 cos.write(buf,0,read);
 }
 file.close();
 outStream.flush();
 cos.close();
 jOptionPane1.showMessageDialog(null, "The
Image Was Decrypted Succesfully!");
 }catch(Exception e){
 jOptionPane1.showMessageDialog(null,e);

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1929
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 }
 }

Reverse Transformation

private void
jButton3ActionPerformed(java.awt.event.ActionEvent
evt) {
 File Input = new File(T1.getText());
 BufferedImage Image;
 try {
 byte[] op = null;
 String s = null;
 Image = ImageIO.read(Input);
 TA2.append("Decoding");
 int w=Image.getWidth(),h=Image.getHeight();
 int msglength=(Image.getRGB(0, 0)&0xff);
 TA2.append("\nByte Buffer Length:
"+msglength);
 for(int row=0,j=0,i=1; row<h ;row++)
 {
 for(int col=0;col<w && j<msglength ;col++
,i++)
 {
 if (i%11==0) {
 int result=Image.getRGB(col,row);
 int charatpos = (((result >> 16) &
0x7) << 5);
 charatpos |= (((result >> 8) & 0x7)
<< 2);
 charatpos |= ((result & 0x3));
 s = s+(char)charatpos;
 j++;
 }
 }
 }
 op = s.getBytes();
 File file = new File(T4.getText());
 File fos = new File("Reverse
Transformed.png");
 FileInputStream is = null;
 FileOutputStream os = null;
 try {
 is = new FileInputStream(file);
 os = new FileOutputStream(fos);
 byte[] buffer = new byte[1024];
 int length;
 while ((length = is.read(buffer)) > 0) {
 os.write(buffer, 0, length);
 }
 } finally {
 is.close();
 os.close();
 }
 TA2.append("\nDecoding done!");
 }
 catch (IOException ex) {
 TA2.append("\n"+ex.getMessage());
 }

 }

 private void
jButton4ActionPerformed(java.awt.event.ActionEvent
evt) {
 jFileChooser1.showOpenDialog(null);
 File f=jFileChooser1.getSelectedFile();
 String filename1=f.getAbsolutePath();
 T4.setText(filename1);
 }

Server – Sending Image

private void
jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {
 ServerSocket server=null;
 Socket socket = null;
 try {
 server = new ServerSocket(4000);
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 TA1.append("Server Waiting for image");

 try {
 socket = server.accept();
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 TA1.append("\nClient connected.");

 InputStream in = null;
 try {
 in = socket.getInputStream();
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 DataInputStream dis = new
DataInputStream(in);

 int len = 0;
 try {
 len = dis.readInt();
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 TA1.append("\nImage Size: " + len/1024 +
"KB");

 byte[] data = new byte[len];
 try {
 dis.readFully(data);
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1930
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 }
 try {
 dis.close();
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 try {
 in.close();
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }

 InputStream ian = new
ByteArrayInputStream(data);
 BufferedImage bImage = null;
 try {
 bImage = ImageIO.read(ian);
 } catch (IOException ex) {

Logger.getLogger(Server_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }

 ImageIcon icon=new ImageIcon(bImage);
 L1.setIcon(icon); // TODO add your
handling code here:
 }

Client – Receiving Image

private void
jButton2ActionPerformed(java.awt.event.ActionEvent
evt) {
 Socket soc = null;
 BufferedImage img = null;
 try {
 soc=new Socket("localhost",4000);
 }
 catch (IOException ex) {

Logger.getLogger(Client_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 System.out.println("Client is running. ");

 try {

 TA1.append("Reading image from disk. ");
 img = ImageIO.read(new File(T1.getText()));
 ByteArrayOutputStream baos = new
ByteArrayOutputStream();

 ImageIO.write(img, "jpg", baos);
 baos.flush();

 byte[] bytes = baos.toByteArray();
 baos.close();

 TA1.append("\nSending image to server. ");

 OutputStream out = soc.getOutputStream();
 DataOutputStream dos = new
DataOutputStream(out);

 dos.writeInt(bytes.length);
 dos.write(bytes, 0, bytes.length);

 TA1.append("\nImage sent to server. ");

 dos.close();
 out.close();

 }catch (Exception e) {
 TA1.append("\nException: " + e.getMessage());
 try {
 soc.close();
 } catch (IOException ex) {

Logger.getLogger(Client_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 }
 try {
 soc.close();
 } catch (IOException ex) {

Logger.getLogger(Client_Image.class.getName()).log(
Level.SEVERE, null, ex);
 }
 }

Login

private void
jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {
String Username;
String Pass; // Declaring Variables

Username = T1.getText();
Pass = P1.getText();

if(Username.equals("admin") &&
Pass.equals("admin"))
{
 Op1.showMessageDialog(null, "Login Succesful!");
 Image_Chooser IG = new Image_Chooser();
 IG.setVisible(true);
 this.dispose();
}
else if(Username.equals("rec")&&Pass.equals("rec"))
{
 Op1.showMessageDialog(null, "Login Succesful!");
 Server_Image IG = new Server_Image();
 IG.setVisible(true);
 this.dispose();
}
else
{
 Op1.showMessageDialog(null, "Login Failed!");
}
 }

Choosing and Displaying an Image

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1931
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

private void
jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {
 jFileChooser1.showOpenDialog(null);
 File f=jFileChooser1.getSelectedFile();
 String filename=f.getAbsolutePath();
 T1.setText(filename);
 ImageIcon icon=new ImageIcon(filename);
 L1.setIcon(icon);
 }

APPENDIX 2

SCREENSHOTS

Login

Sign Up

Encryption / Decryption Module

Transformation / Reverse Transformation Module

Sender Module

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1932
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Receiver Module

IJSER

http://www.ijser.org/

